

ISSN No. (Print): 0975-1718 ISSN No. (Online): 2249-3247

# The $\Delta I = 1$ Energy Staggering in Odd Superdeformed Nuclei <sup>191</sup>Hg, <sup>193</sup>Hg and <sup>193</sup>Pb

A.M. Khalaf<sup>\*</sup>, M.D. Okasha<sup>\*\*</sup> and E.H. Ragheb<sup>\*</sup>

\*Physics Department, Faculty of Science, Al Azhar University, Cairo, Egypt. \*\*Physics Department, Faculty of Science (Girls College), Al Azhar University, Cairo, Egypt.

> (Corresponding author: A.M. Khalaf) (Received 22 August, 2016 accepted 15 October, 2016) (Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: The energy formula expressed in terms of rotational, vibrational and perturbation terms is built for three pairs of signature partners in odd superdeformed (SD) nuclei <sup>191</sup>Hg, <sup>193</sup>Hg and <sup>193</sup>Pb. A fitting procedure is employed to parameterize spins of the signature partner pairs in terms of their observed  $\gamma$ -ray energies. With the suggested level spins for each of the studied SD bands, the model parameters are determined. The best fitted parameters have been used to calculate E2 transition  $\gamma$ -ray energies, dynamic and kinematic moments of inertia and the calculated results agreed with the experimental data very well. It indicates that our proposed energy formula is powerful in describing the signature parterres. There is a significant increase in nuclear moments of inertia with increasing rotational frequency. We study theoretically the  $\Delta I = 1$ staggering phenomenon by means of proposed staggering function depending on the dipole and quadruple  $\gamma$ -ray transition linking the two signature partner bands. A large amplitude staggering pattern is found in the three signature partner pairs.

## **I. INTRODUCTION**

Since the experimental discovery of the first discrete superdeformed rotational band (SDRB) at high spins in the nucleus <sup>152</sup>Dy in 1986[1], a large number superdeformed (SD) bands have now been found in nuclei in several mass regions A~30, 60, 80, 130, 150, and 190[2, 3]. Recently the study of superdeformation is one of the most exciting areas in nuclear physics. Because of the large quadruple deformation, the decay sequences in SD bands are usually found to be completely dominated by stretched E2 transitions. However, level spins in most of SD bands were not determined experimentally. Because of the regular behavior of their transition energies, their spins were predicted theoretically by various approaches [4-13]. For many SD bands in mass A~ 190 region, the dynamical moments of inertia show a typical smooth rise with increasing rotational frequency. This behavior was attributed to the gradual alignment of quasi particle pairs occupying specific high N intruder orbital (namely  $j_{15/2}$  neutrons and  $i_{13/2}$  protons) in the presence of weak pair correlations.

Another interesting features connected to the SD nuclei in mass  $A\sim190$  region is the measurement of the magnetic properties. The branching ratios of M1 transition between signature partner SD bands and the cross-talk between them were measured in <sup>193</sup>Hg and

<sup>193</sup>Pb[14,15]. It was seen that majority of SD bands observed in odd-A nuclei in the mass A~190 region are signature partners. They exhibit a  $\Delta I = 1$  energy staggering or signature splitting [16-25]. In previous papers [26-30], we investigated the  $\Delta I = 1$  staggering in signature partner pairs of odd-A SD bands by extract the differences between the average transition  $E_{\gamma}(I+2\rightarrow I)$  and  $E_{\gamma}(I\rightarrow I-2)$  energies in one band and the transition  $E_{\gamma}(I+1 \rightarrow I-1)$  energies in the signature partner. The purpose of this work is to investigate the  $\Delta I =$ 1staggerring in signature partner pairs of odd-A nuclei by using a staggering function depends on the dipole and quadruple transition energies. In section 2 the outline of the model to be used is described in terms of rotational, vibrational and perturbation terms. Section 3 is devoted to study the concept of  $\Delta I = 1$  energy staggering in SD bands. Numerical calculations and discussions for describing the structure of SD bands in <sup>191</sup>Hg, <sup>193</sup>Hg and <sup>193</sup>Pb nuclei are presented in section4.

## **II. THEORETICAL FRAMEWORK**

In framework of phenomenological rotationalvibrational model (RVM), the energies E within a band of an axial symmetric nucleus exhibit a smooth dependence on angular momentum I can be expressed in a simple expression in the form

$$E(I) = AI(I+1) + BI + CI^3 + E_0$$

The first term is the rotational energy with the inertial parameter  $A = \hbar^2/2J$  where J is the kinematic moment of inertia about an axis perpendicular to the nuclear symmetry axis and is related to the angular momentum I. The second term is the vibrational energy with B is the vibrational constant. The third term is a perturbation term proportional to the cubic power of angular momentum. The last term is a bandhead energy.

Experimentally, the  $\gamma$ -ray transition energies  $E_{\gamma 2}$  (I $\rightarrow$ I-2) are commonly observed, thus  $E_{\gamma 2}$  within a band can be given by the parabolic function

$$E_{\gamma 2} (I) = E (I) - E (I - 2)$$
  
=  $C_2 I^2 + C_1 I + C_0$   
where  $C_2 = 6C$   
 $C_1 = 4A - 12C$   
 $C_0 = -2A + 2B + 8C$ 

where

Therefore, a quadratic fit through the variation of  $E_{\nu}$  with spin I is obtained. The spin values start from  $I = I_0 + 2$ where  $I_0$  is the bandhead spin. The fit then evaluates the model parameters  $C_2$ ,  $C_1$  and  $C_0$ .

In order to investigate the  $\Delta I = 1$  energy staggering, we need the dipole transition energy, that is the transition energy  $E_{\gamma l}$  from spin I to spin (I-1) which is given by

$$E_{\gamma 1} (I) = E (I) - E (I - 1)$$
  
=  $b_2 I^2 + b_1 I + b_0$   
 $b_2 = 3C$   
 $b_1 = 2A - 3C$   
 $b_0 = B + C = 0$ 

One can determine the initial values of the three parameters  $C_2, C_1$  and  $C_0$  from the three first transitions  $E_{\gamma}(I_0)$ ,  $E_{\gamma}(I_0+2)$  and  $E_{\gamma}(I_0+4)$  and considering these as a trial values for the fetting. It is easily to verity that

$$C_{2} = \frac{1}{8} [E_{\gamma}(I_{0} + 4) - 2E_{\gamma}(I_{0} + 2) + E_{\gamma}(I_{0})]$$

$$C_{1} = \frac{1}{4} [-(I_{0} + 1)E_{\gamma}(I_{0} + 4) + (2I_{0} + 4)E_{\gamma}(I_{0} + 2) - (I_{0} + 3)E_{\gamma}(I_{0})]$$

$$C_{0} = \frac{1}{8} \{I_{0}(I_{0} + 2)E_{\gamma}(I_{0} + 4) - 2I_{0}(I_{0} + 4)E_{\gamma}(I_{0} + 2) + [8 + I_{0}(I_{0} + 6)]E_{\gamma}(I_{0})\}$$

The rotational frequency  $\hbar\omega$ , the dynamic  $J^{(2)}$  and kinematic  $J^{(1)}$  moments of inertia will be calculated from the  $\gamma$ -ray transition energies  $E_{\gamma}(I)$  with the following definitions

$$\begin{split} \hbar\omega(I) &= \frac{E_{\gamma}(I+2\to I) + E_{\gamma}(I\to I-2)}{4} \\ J^{(2)}(I) &= \frac{4}{E_{\gamma}(I+2\to I) - E_{\gamma}(I\to I-2)} \\ J^{(1)}(I) &= \frac{2I-1}{E_{\gamma}(I\to I-2)} \end{split} \qquad \hbar^2 MeV^{-1} \end{split}$$

with  $E_{\gamma}$  in unit of MeV.

It is seen that, while the extracted  $J^{(1)}$  depends on the spin I proposition,  $\hbar \omega$  and  $J^{(2)}$  does not.

## III. ANALYSIS OF $\Delta I = 1$ STAGGERING IN SD BANDS

It was found that many SD bands observed in odd-A nuclei in the A~ 190 region are signature partners and exhibit  $\Delta I = 1$  signature splitting with large amplitude [16-30]. To investigate this  $\Delta I = 1$ staggering, we will propose the following staggering function

$$Y(I) = \frac{2I - 1}{I} \frac{E(I) - E(I - 1)}{E(1) - E(I - 2)} - 1$$
$$= \frac{2I - 1}{I} \frac{E_{\gamma 1}(I)}{E_{\gamma 2}(I)} - 1$$

The plot of Y(I) versus I is the most simple way to identify the crossing of the two signature partners. Although one expects linear behavior Y(I) = 0 for pure rotator according to the usual I(I + 1) formula, the band exhibit a zigzag behavior or perturbation with large amplitude staggering. In previous papers [26-30], we investigated the  $\Delta I = 1$  staggering in signature partner pairs of odd SD bands, by extracting the difference between the averaged transitions I +2 $\rightarrow$ I and I $\rightarrow$ I-2 energies in one band and the transition I+1 $\rightarrow$ I-1 energies in the signature partner

$$\Delta^{2} E_{\gamma}(I) = \frac{1}{2} [E_{\gamma}(I+2 \to I) + E_{\gamma}(I \to I-2) - 2E_{\gamma}(I+1 \to I-1)]$$

### **IV. NUMERICAL RESULTS**

Our selected data set includes three signature partner pairs in Hg and Pb namely  $^{191}$ Hg (SD2, SD3),  $^{193}$ Hg (SD3, SD4), and  $^{193}$  Pb (SD3, SD4). The experimental transition energies are taken from Ref. [3].

To parameterize the level spins for each SD bands, we assumed various values for the bandhead spin  $I_0$ and the model parameters are adjusted by using a simulated search program in order to obtain a minimum root mean square deviation  $\chi$  defined by

$$\chi = \frac{1}{N} \left[ \sum_{I_i} \left| \frac{E_{\gamma}^{exp}(I_i) - E_{\gamma}^{cal}(I_i)}{\Delta E_{\gamma}^{exp}(I_i)} \right|^2 \right]^{1/2}$$

of the calculated energies  $E_{\gamma}^{cal}$  from the observed ones  $E_{\gamma}^{exp}$ , where N is the number of the data points entering into the fetting procedure and  $\Delta E_{\gamma}^{exp}(I_i)$  is the experimental errors in  $\gamma$ -ray transition energies. The fitting procedure was repeated with bandhead spin  $I_0$ fixed at the nearest half integer. The calculated bandhead spin  $I_0$  and the resulting best model parameters  $C_2$ ,  $C_1$ ,  $C_0$ ,  $b_2$  and  $b_1$  and the lowest observed  $E_\gamma$  are listed in Table 1.

#### Khalaf, Okasha and Ragheb

| S.D Bands              | $I_0(\hbar)$ | $E_{\gamma}(I_0+2\rightarrow I_0)$ | C <sub>2</sub> (KeV) | C <sub>1</sub> (KeV) | C <sub>0</sub> (KeV) | b <sub>2</sub> (KeV) | b <sub>1</sub> (KeV) |
|------------------------|--------------|------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
|                        |              | (KeV)                              |                      |                      |                      |                      |                      |
| $^{191}$ Hg(SD2)       | 10.5         | 252.4                              | -0.055066            | 21.762846            | -10.881423           | -0.027533            | 10.85387             |
| $^{191}$ Hg(SD3)       | 11.5         | 272.0                              | -0.062234            | 21.820192            | -10.910096           | -0.031117            | 10.878979            |
| $^{193}$ Hg(SD3)       | 9.5          | 233.5                              | -0.063950            | 21.978037            | -10.989018           | -0.031975            | 10.957043            |
| $^{193}$ Hg(SD4)       | 10.5         | 254.0                              | -0.062911            | 21.954720            | -10.977360           | -0.031455            | 10.945904            |
| <sup>193</sup> Pb(SD3) | 12.5         | 291.5                              | -0.046108            | 21.583440            | -10.791720           | -0.023054            | 10.768665            |
| $^{193}$ Pb(SD4)       | 13.5         | 313.4                              | -0.064998            | 21.938188            | -10.969094           | -0.032499            | 10.936594            |

Table 1: Bandhead spin proposition I<sub>0</sub> and the best model parameters adopted from the best fit method for our selected SD bands.

The bandhead spin assignments are consistent with previous works [27, 29, 31]. Using the adopted I<sub>0</sub> and the optimized model parameters, The transition energies  $E_{\gamma}$  (I), the rotational frequency  $\hbar\omega$ , the kinematic  $J^{(1)}$  and dynamic  $J^{(2)}$  moments of inertia are calculated. Table 2 compare the calculated  $E_{\gamma}$  with experimental data [3]. Very good agreement has been obtained. Figure (1) presents the dynamic  $J^{(2)}$  and kinematic  $J^{(1)}$  moments of inertia for our three pairs of

signature partner as a function of rotation frequency h $\omega$ , compared with the experimental data. For all cases  $J^{(2)}$  moments of inertia exhibit a smooth increase with frequency. The average values of  $J^{(2)}$  for bands 3 and 4 of <sup>193</sup>Pb (105.066 and 111.241 h<sup>2</sup>MeV<sup>-1</sup> respectively) are smaller than the corresponding values for bands 2 and 3 of <sup>191</sup>Hg (110.986, 114.547 h<sup>2</sup>MeV<sup>-1</sup> respectively) and for bands 3 and 4 of <sup>193</sup>Hg (116.286, 117.115 h<sup>2</sup>MeV<sup>-1</sup> respectively).

Table 2: The calculated  $\gamma$ -ray transition energies  $E_{\gamma}(I)$  for our selected SD signature partners and comparison with experimental data [3]. The bandhead spin and the model parameters are listed in Table (1).

| <sup>191</sup> Hg(SD2) |                    |                    |                       | <sup>191</sup> Hg(SD3) |                    |                    |                       |  |  |
|------------------------|--------------------|--------------------|-----------------------|------------------------|--------------------|--------------------|-----------------------|--|--|
| I                      | $E^{cal}(I)$ (KeV) | $E_{\nu}^{cal}(I)$ | $E_{\gamma}^{exp}(I)$ | Ι                      | $E^{cal}(I)$ (KeV) | $E_{\nu}^{cal}(I)$ | $E_{\gamma}^{exp}(I)$ |  |  |
| (ħ)                    |                    | KeV                | (KeV)                 | (ħ)                    |                    | KeV                | (KeV)                 |  |  |
| 10.5                   | 634.9345           |                    |                       | 11.5                   | 754.0190           |                    |                       |  |  |
| 12.5                   | 887.4845           | 252.5500           | 252.5500              | 13.5                   | 1026.3393          | 272.7203           | 272.0                 |  |  |
| 14.5                   | 1180.5867          | 293.1022           | 292.7                 | 15.5                   | 1338.6904          | 312.3511           | 313.1                 |  |  |
| 16.5                   | 1513.8005          | 333.2138           | 333.1                 | 17.5                   | 1690.5745          | 351.8841           | 352.55                |  |  |
| 18.5                   | 1886.6853          | 372.8848           | 372.75                | 19.5                   | 2081.4936          | 390.9191           | 391.5                 |  |  |
| 20.5                   | 2298.8007          | 412.1154           | 411.8                 | 21.5                   | 2510.9499          | 429.4563           | 429.7                 |  |  |
| 22.5                   | 2749.7061          | 450.9054           | 450.3                 | 23.5                   | 2978.4455          | 467.4956           | 467.1                 |  |  |
| 24.5                   | 3238.9610          | 489.2549           | 488.1                 | 25.5                   | 3483.4826          | 505.0371           | 503.9                 |  |  |
| 26.5                   | 3766.1248          | 527.1638           | 525.2                 | 27.5                   | 4025.5633          | 542.0807           | 539.7                 |  |  |
| 28.5                   | 4330.7571          | 564.6323           | 561.6                 | 29.5                   | 4604.1897          | 578.6264           | 575.0                 |  |  |
| 30.5                   | 4932.4173          | 601.6602           | 597.2                 | 31.5                   | 5218.8639          | 614.6742           | 609.5                 |  |  |
| 32.5                   | 5570.6649          | 638.2476           | 632.15                | 33.5                   | 5869.0881          | 650.2242           | 642.7                 |  |  |
| 34.5                   | 6245.0593          | 674.3944           | 666.2                 | 35.5                   | 6554.3644          | 685.2763           | 676.1                 |  |  |
| 36.5                   | 6955.9600          | 7100.1007          | 699.9                 | 37.5                   | 7274.1949          | 719.8305           | 708.5                 |  |  |
| 38.5                   | 7700.5265          | 745.3665           | 732.7                 | 39.5                   | 8028.0817          | 753.8868           | 740.0                 |  |  |
| 40.5                   | 8480.7183          | 780.1918           | 765.2                 | 41.5                   | 8815.5270          | 787.4453           | 771.3                 |  |  |
| 42.5                   | 9295.2948          | 814.5765           | 796.5                 | 43.5                   | 9636.0329          | 820.5059           | 800.5                 |  |  |
| $^{193}$ Hg(S          | D3)                |                    |                       | <sup>193</sup> Hg(SD4) |                    |                    |                       |  |  |
| 9.5                    | 535.8507           |                    |                       | 10.5                   | 646.9318           |                    |                       |  |  |
| 11.5                   | 769.1517           | 233.3010           | 233.5                 | 12.5                   | 900.5585           | 253.6267           | 254.0                 |  |  |
| 13.5                   | 1043.2112          | 274.0595           | 275.2                 | 14.5                   | 1194.6975          | 249.1390           | 294.6                 |  |  |
| 15.5                   | 1357.5177          | 314.3065           | 315.2                 | 16.5                   | 1528.8455          | 334.1480           | 334.9                 |  |  |
| 17.5                   | 1711.5596          | 354.0419           | 354.9                 | 18.5                   | 1902.4991          | 373.6536           | 374.5                 |  |  |
| 19.5                   | 2104.8253          | 393.2657           | 393.8                 | 20.5                   | 2315.1551          | 412.6560           | 413.1                 |  |  |
| 21.5                   | 2536.8031          | 431.9778           | 432.1                 | 22.5                   | 2766.3102          | 451.1551           | 451.1                 |  |  |
| 23.5                   | 3006.9815          | 470.1784           | 469.8                 | 24.5                   | 3255.4611          | 489.1509           | 488.3                 |  |  |
| 25.5                   | 3514.8489          | 507.8674           | 506.2                 | 26.5                   | 3782.1045          | 526.6434           | 524.9                 |  |  |
| 27.5                   | 4059.8937          | 545.0448           | 541.5                 | 28.5                   | 4345.7372          | 563.6327           | 559.9                 |  |  |

Continued...

| Khalaf, | Okasha and | Ragheb |
|---------|------------|--------|
|---------|------------|--------|

| <sup>191</sup> Hg(SD2) |                    |                    |                       | <sup>191</sup> Hg(SD3) |                    |                    |                       |  |
|------------------------|--------------------|--------------------|-----------------------|------------------------|--------------------|--------------------|-----------------------|--|
| Ι                      | $E^{cal}(I)$ (KeV) | $E_{\nu}^{cal}(I)$ | $E_{\gamma}^{exp}(I)$ | Ι                      | $E^{cal}(I)$ (KeV) | $E_{\nu}^{cal}(I)$ | $E_{\gamma}^{exp}(I)$ |  |
| (ħ)                    |                    | KeV                | (KeV)                 | (ħ)                    |                    | KeV                | (KeV)                 |  |
| 29.5                   | 4641.6042          | 581.7105           | 576.8                 | 30.5                   | 4945.8558          | 600.1186           | 594.9                 |  |
| 31.5                   | 5259.4689          | 617.8647           | 611.3                 | 32.5                   | 5581.9570          | 636.1012           | 628.8                 |  |
| 33.5                   | 5912.9762          | 653.5073           | 644.3                 | 34.5                   | 6253.5376          | 671.5806           | 661.7                 |  |
| 35.5                   | 6601.6145          | 688.6383           | 677.8                 | 36.5                   | 6960.0443          | 706.5567           | 694.1                 |  |
| 37.5                   | 7324.8721          | 723.2576           | 709.9                 | 38.5                   | 7701.1238          | 741.0295           | 725.6                 |  |
| 39.5                   | 8082.2375          | 757.3654           | 742.2                 | 40.5                   | 8476.1228          | 774.9990           | 756.6                 |  |
| 41.5                   | 8873.1991          | 790.9616           | 771.2                 | 42.5                   | 9284.5880          | 808.4652           | 787.3                 |  |
| 43.5                   | 9697.2453          | 824.0462           | 802.2                 | 44.5                   | 10126.0161         | 841.4281           | 817.7                 |  |
| 45.5                   | 10553.8644         | 856.6191           | 832.1                 | 46.5                   | 10999.9039         | 873.8878           | 847.5                 |  |
| 47.5                   | 11442.5449         | 888.6805           | 860.5                 | 48.5                   | 11905.7480         | 905.8441           | 876.1                 |  |
| <sup>193</sup> Pb(Sl   | D3)                |                    |                       | <sup>193</sup> Pb(SD4) |                    |                    |                       |  |
| 10.5                   | 639.9508           |                    |                       | 11.5                   | 767.3806           |                    |                       |  |
| 12.5                   | 891.7477           | 251.7969           | 251.5                 | 13.5                   | 1040.7311          | 273.3505           | 273                   |  |
| 14.5                   | 1184.2216          | 292.4739           | 291.5                 | 15.5                   | 1354.1881          | 313.4570           | 313.4                 |  |
| 16.5                   | 1517.0037          | 332.7821           | 332.4                 | 17.5                   | 1707.2316          | 353.0435           | 353.1                 |  |
| 18.5                   | 1889.7251          | 372.7214           | 372.1                 | 19.5                   | 2099.3416          | 392.1100           | 391.9                 |  |
| 20.5                   | 2302.0170          | 412.2919           | 411.9                 | 21.5                   | 2529.9982          | 430.6566           | 430                   |  |
| 22.5                   | 2753.5105          | 451.4935           | 450.6                 | 23.5                   | 2998.6813          | 468.6831           | 467.1                 |  |
| 24.5                   | 3243.8367          | 490.326            | 488.9                 | 25.5                   | 3504.8710          | 506.1897           | 503.9                 |  |
| 26.5                   | 3772.6267          | 528.7900           | 526.6                 | 27.5                   | 4048.0473          | 543.1763           | 539.5                 |  |
| 28.5                   | 4339.5117          | 566.8850           | 563.4                 | 29.5                   | 4627.6902          | 579.6429           | 575.1                 |  |
| 30.5                   | 4944.1229          | 604.6112           | 599.9                 | 31.5                   | 5243.2797          | 615.5895           | 610                   |  |
| 32.5                   | 5586.0914          | 641.9685           | 637                   | 33.5                   | 5894.2958          | 651.0161           | 644.5                 |  |
| 34.5                   | 6265.0483          | 678.9569           | 672.2                 | 35.5                   | 6580.2186          | 685.9228           | 676.4                 |  |
| 36.5                   | 6980.6247          | 715.5764           | 709.2                 | 37.5                   | 7300.5281          | 720.3095           | 707.2                 |  |





### Rotational Frequency ħω (MeV)

**Fig. 1.** The calculated dynamic  $J^{(2)}$  moment of inertia (closed circle) and kinematic  $J^{(1)}$  (open circle) as a function of rotational frequency h $\omega$  for the three pairs of signature SD bands in <sup>191</sup>Hg , <sup>193</sup>Hg and <sup>193</sup>Pb nuclei and comparison with experimental data[3] ( closed circles with error bars).

It was found that the majority of SD bands observed in odd-A nuclei in A~190 mass region are signature partner pairs of SD bands. Their bandhead moments of inertia are almost identical. To investigate the  $\Delta I = 1$  staggering in signature partner pairs, the staggering function Y(I) has been calculated in terms of dipole and quadruple transition energies. The calculated values are listed in

Table 3 and plotted versus the spin I in Figure (2). We notice that all signature partner pairs exhibit large amplitude staggering. The pair <sup>191</sup>Hg (SD2,SD3) is interpreted as signature partners built on the 3/2+[642] orbital, they exhibit a signature splitting of 65 keV at  $\hbar\omega \sim 0.4$ MeV.

Table 3: The calculated  $\Delta I = 1$  staggering function Y(I) for the signature partner pairs <sup>191</sup>Hg(SD2, SD3), <sup>193</sup>Hg(SD3, SD4) and <sup>193</sup>Pb(SD3, SD4).

| <sup>191</sup> Hg(SD2, SD3) |               |          | <sup>193</sup> Hg(SD3, SD4) |            |          | <sup>193</sup> Pb(SD3, SD4) |         |         |
|-----------------------------|---------------|----------|-----------------------------|------------|----------|-----------------------------|---------|---------|
| I(ħ)                        | ħ) Y(I) (KeV) |          | I(ħ)                        | Y(I) (KeV) |          | I(ħ)                        | Y(I) (I | KeV)    |
|                             | EXP           | Cal      |                             | EXP        | EXP Cal  |                             | EXP     | Cal     |
| 12.5                        | 0.01420       | 0.01466  | 11.5                        | 2.9665     | 2.19022  | 12.5                        | -0.0528 | -0.0516 |
| 13.5                        | -0.01802      | -0.01797 | 12.5                        | -5.3712    | -5.2267  | 13.5                        | 0.0506  | 0.0496  |
| 14.5                        | 0.016088      | 0.01622  | 13.5                        | 5.0848     | 2.4776   | 14.5                        | -0.0555 | -0.0526 |
| 15.5                        | -0.01659      | -0.02031 | 14.5                        | -0.01035   | -5.4862  | 15.5                        | 0.0550  | 0.4948  |
| 16.5                        | 0.013163      | 0.01918  | 15.5                        | 8.3852     | 2.6387   | 16.5                        | -0.573  | -0.0511 |
| 17.5                        | -0.016255     | -0.02397 | 16.5                        | -0.01159   | -5.6139  | 17.5                        | 0.0538  | 0.0468  |
| 18.5                        | 0.014040      | 0.02342  | 17.5                        | 8.4840     | 2.6705   | 18.5                        | -0.0556 | -0.0472 |
| 19.5                        | -0.01800      | -0.02888 | 18.5                        | -0.01127   | -5.6085  | 19.5                        | 0.0508  | 0.0417  |
| 20.5                        | 0.016659      | 0.02887  | 19.5                        | 7.1125     | 2.5707   | 20.5                        | -0.0498 | -0.0408 |
| 21.5                        | -0.022189     | -0.03498 | 20.5                        | -0.01007   | -5.4679  | 21.5                        | 0.0422  | 0.0341  |
| 22.5                        | 0.021490      | 0.03547  | 21.5                        | 5.9895     | 2.3357   | 22.5                        | -0.0401 | -0.0319 |
| 23.5                        | -0.028256     | -0.04224 | 22.5                        | -9.0821    | -5.1893  | 23.5                        | 0.0306  | 0.0239  |
| 24.5                        | 0.028422      | 0.04321  | 23.5                        | 5.0514     | 1.9628   | 24.5                        | -0.0263 | -0.0204 |
| 25.5                        | -0.03620      | -0.05065 | 24.5                        | -8.6478    | -4.7709  | 25.5                        | -0.0153 | 0.0111  |
| 26.5                        | 0.036859      | 0.05208  | 25.5                        | 3.7066     | 1.4494   | 26.5                        | -0.0100 | -0.0063 |
| 27.5                        | -0.046071     | -0.06020 | 26.5                        | -6.4150    | -4.2102  | 27.5                        | -0.0033 | -0.0043 |
| 28.5                        | 0.047587      | 0.06207  | 27.5                        | -0.1631    | 0.7929   | 28.5                        | 0.0099  | 0.0102  |
| 29.5                        | -0.05769      | -0.07090 | 28.5                        | -2.6952    | -3.5045  | 29.5                        | 0.0238  | -0.0225 |
| 30.5                        | 0.059421      | 0.07318  | 29.5                        | -2.5684    | -0.01012 | 30.5                        | 0.0308  | 0.0295  |
| 31.5                        | -0.070336     | -0.08276 | 30.5                        | -0.4179    | -2.6509  | 31.5                        | -0.0461 | -0.0434 |
| 32.5                        | 0.072361      | 0.08543  | 31.5                        | -5.0258    | -0.09621 | 32.5                        | 0.0553  | 0.0515  |
| 33.5                        | -0.085017     | -0.09579 | 32.5                        | 1.4675     | -1.6470  | 33.5                        | -0.0733 | -0.0672 |
| 34.5                        | 0.087920      | 0.09882  | 33.5                        | -7.6817    | -2.0658  | 34.5                        | 0.0821  | 0.0762  |
| 35.5                        | -0.100603     | -0.10999 | 34.5                        | 4.3657     | -0.4901  | 35.5                        | -0.1040 | -0.0939 |
| 36.5                        | 0.103449      | 0.11337  | 35.5                        | -9.0839    | -3.3246  | 36.5                        | 0.1177  | 0.1037  |
| 37.5                        | -0.117126     | -0.12540 | 36.5                        | 4.5782     | 0.8230   | 37.5                        | -0.1480 | -0.1236 |
| 38.5                        | 0.120012      | 0.12909  | 37.5                        | -9.2501    | -4.7416  |                             |         |         |

Continued.....

| <sup>191</sup> Hg(SD2, SD3) |            |          | <sup>193</sup> Hg(SD3, SD4) |            |          | <sup>193</sup> Pb(SD3, SD4) |         |      |
|-----------------------------|------------|----------|-----------------------------|------------|----------|-----------------------------|---------|------|
| I(ħ)                        | Y(I) (KeV) |          | I(ħ)                        | Y(I) (KeV) |          | I(ħ)                        | Y(I) (F | KeV) |
|                             | EXP        | Cal      |                             | EXP        | Cal      |                             | EXP     | Cal  |
| 39.5                        | -0.13464   | -0.14202 | 38.5                        | 4.3730     | 2.2956   |                             |         |      |
| 40.5                        | 0.138190   | 0.14599  | 39.5                        | -7.5528    | -6.3198  |                             |         |      |
| 41.5                        | -0.153621  | -0.15987 | 40.5                        | 1.4420     | 3.9303   |                             |         |      |
| 42.5                        | 0.156630   | 0.16409  | 41.5                        | -6.8755    | -8.0624  |                             |         |      |
| 43.5                        | -0.174019  | -0.17899 | 42.5                        | 3.3760     | 5.7304   |                             |         |      |
|                             |            |          | 43.5                        | -7.9973    | -9.9727  |                             |         |      |
|                             |            |          | 44.5                        | 4.0751     | 7.6990   |                             |         |      |
|                             |            |          | 45.5                        | -8.9235    | -12.0540 |                             |         |      |
|                             |            |          | 46.5                        | 5.1945     | 9.8358   |                             |         |      |
|                             |            |          | 47.5                        | -11.2877   | -14.3102 |                             |         |      |
|                             |            |          | 48.5                        | 8.0613     | 12.1560  |                             |         |      |

Khalaf, Okasha and Ragheb

In conclusion, the energies of three pairs signature partners in the odd SD mercury and lead nuclei are described by a simple formula including rotational, vibrational and perturbation terms. For each SD band the transition energies and level spins are parameterized by

three parameter expression by using a simulated search program. The best fitted parameters have been used to calculate the rotational frequencies  $\hbar\omega$ , the kinematic  $J^{(1)}$  and dynamic  $J^{(2)}$  moments of inertia.

63





Spin I( $\hbar$ )

Fig. 2. The calculated staggering function Y (I) versus spin I for our selected signature partner SD bands observed in <sup>191</sup>Hg, <sup>193</sup>Hg and <sup>193</sup>Pb nuclei. The closed circles stand for signature  $\alpha =+1/2$  and open circles for  $\alpha =-1/2$ .

=-1/2

The calculated results agree very well with the experimental data. We noticed that for all the studied SD bands  $J^{(1)}$  and  $J^{(2)}$  are found to rise steadily with h $\omega$  and the transition energies in <sup>191</sup>Hg (SD3) is identical to <sup>193</sup>Hg (SD3). The  $\Delta I$  = 1staggring phenomena in the spectrum of signature partners has been discussed by considering a staggering function includes a dipole and quadruple transition energies. A large fluctuations of the staggering function as a function of the angular momentum is found in all the considered three signature partner pairs. The staggering is very large.

## REFERENCES

[1]. P.J. Twin et al, Phys. Rev. lett. 57(1986) 811.

[2]. B. Singh, R. Zywina and R.B. Firestone, *Nuclear Data Sheets* 97 (2002)241.

[3]. National nuclear data center NNDC, Brookhaven National Laboratory [Cited on July 2012] http. / /www.nndc.bnl.gov/chart/.

[4]. J.A. Becker et al, Nucl. Phys. A520 (1990)1880.

[5]. J.E. Draper et al, *Phys. Rev.* C42(1990)R1791.

[6]. S.X. Liu and J.Y. Zeng, Phys. Rev. C58(1998) 3266.

[7]. A. M. Khalaf et al, *Egypt. J. Phys.* **33**(67) (2002) **33** (3) (2002) 585,**34** (2) (2003) 159,**34** (2) (2003) 195,**35** (1)(2004)79,**37** (3) (2006)195, 41 (2) (2010)151.

[8]. A. M. Khalaf, M. M. Taha and M. Kotb, *Prosress in Physics* 4(2012)39.

[9]. A. M. Khalaf, M. Sirag and M. Taha, *Turkish J. Phys.* **37** (2013) 49.

[10]. A.M. Khalaf and M.D. Okasha, *Progress in Physics* **10**(2014) 246.

[11]. A.M. Khalaf, M. Kotob and K.E. Abdelmageed, *Journal of Advances in Physics* 6(3) (2014)1251.

[12]. A.M. Khalaf et al, International Joural of Theoretical & Applied Sciences, **7**(2) (2015) 33.

[13]. A.M. Khalaf, K.E. Abdelmageed and M. Sirag, *Turkish Journal of Physics* **39** (2015)178.

- [14]. M.J. Jayce et al, Phys. Rev. Lett. 71(1993)2176
- [15]. J.R. Hughes et al, Phys. Rev. C51 (1995)447
- [16]. M.J. Joyce et al, Phys. Lett. B340(1994)150.
- [17]. S. Pilotte et al, Phys. Rev. Cug (1994)718.
- [18]. J. Duprat et al, Phys. Lett. B341 (1994)6.
- [19]. M.P. Carpenter et al, Phys. Rev. C51 (1995)2400.
- [20]. L.P. Farris et al, Phys. Rev. C51(1995)R2288.
- [21]. R.M. Clark et al, Phys. Rev. C51(1995)R1052.
- [22]. I.M. Hughes et al, Phys. Rev. C51(1995)R447.
- [23]. I.M. Hilbert et al, Phys. Rev. C54(199602253.
- [24]. S. Bounem et al, Phys. Rev. C53(1996)Rg.
- [25]. G. Hackmen et al, Phys. Rev. C55(1997)148.

[26]. A.M. Khalaf, M. Allam and Eman Saber, *Egypt. J. Phys.* **39** (1) (2008)41.

[27]. A.M. Khalaf. et al, Progress in Physics 3(2013)39.

[28]. A.M. Khalaf, K.E. Abdelmageed and Eman Saber, International Journal of Theoretical & Applied Sciences, 6(2)(2014)56.

[29]. A.M. Khalaf *et al, IOSR Journal of Applied Physics* 7(5) (2015)1.

[30]. A.M. Khalaf, M.F. Elgabry and T.M. Awwad, International Journal of Advanced Research in Physical Science (IJARPS) **2**(12) (2015) 1.

[31]. A.M. Khalaf, H. Yassin and E.R. Aboelyazeed, *Journal of Advances in Physics* **11**(1)(2015)2918.